5 New Battery Technologies That Could CHANGE EVERYTHING HD
Batteries are everywhere in today’s hyperconnected electrically propelled society. Sign up https://brilliant.org/ElectricFuture/ First 200 people get 20% off annual premium subscription. Thanks to Brilliant for sponsoring this video! What if your electric car could travel 1000 miles on a single charge, charge in 10 minutes, and last for 1 million miles? Today just about every electric car uses lithium ion batteries. They’re pretty good, but ultimately are heavy and have long charging times for the amount of energy they can store. According to Elon Musk, battery modules are the main limiting factor in electric vehicle life. In 2019 he said the Tesla Model 3 drive unit is rated for 1 million miles, but the battery isn’t as long lasting. To handle the predicted demand explosion for electric vehicles over the coming decades, we’ll need to create a breakthrough battery that is cheaper, longer lasting, more durable, and more efficient. We must also address the issues of political and environmental sustainability to ensure batteries remain tenable in an increasingly electric future. Over 80% of world’s lithium deposits are found in China, and current technology also relies heavily on cobalt, an element mostly found in the Democratic Republic of Congo. After Tesla’s recent battery day, where Elon Musk announced a larger, tabless 4680 battery cell with improved energy density, greater ease of manufacturing, and lower cost. The world’s attention is now more focused on batteries than ever before, but Tesla isn’t the only show in town. Lithium air batteries. Metal air batteries have been around for a while. You might find a little zinc air button cell in a hearing aid, for example, but scaled up aluminum and lithium air chemistries are also promising for the automotive and aerospace industries. The potential for lightweight batteries with high energy storage makes this battery technology promising. Lithium air batteries could have a maximum theoretical specific energy of 3,460 W h/kg , almost 10 times more than lithium ion. NASA researchers have also been investigating lithium air batteries for use in aircraft. Nanotech Batteries. Nanotechnology has been a buzzword for several decades, but is now finding applications in everything from nanoelectronics to biomedical engineering, and body armor to extra-slippery clothing irons. Nanomaterials make use of particles and structures 1-100 nanometers in size, essentially one size up from the molecular scale. Carbon nanostructures also show great promise. Graphene is one of the most exciting of these. Amprius go one stage further with their anodes of ‘100% silicon nanowire’. The maker claims that they can achieve 500 Wh/kg which is in the range suitable for enabling electric aircraft in partnership with Airbus. Nanomaterial research is promising Lithium sulphur batteries are one emerging technology that can offer greatly improved energy densities compared to lithium-ion. The theoretical maximum specif