BIRDSTRIKE ALARM! A321 encounters huge bird, BULLET-like near miss after SCENIC approach! [AirClips] HD
Madrid approach. A bird strike—sometimes called birdstrike, bird ingestion (for an engine), bird hit, or BASH (for Bird Aircraft Strike Hazard)—is a collision between an airborne animal (usually a bird or bat) and a human-made vehicle, especially aircraft. The term is also used for bird deaths resulting from collisions with human-made structures such as power lines, towers and wind turbines. Bird strikes are a significant threat to flight safety, and have caused a number of accidents with human casualties. The number of major accidents involving civil aircraft is quite low and it has been estimated that there is only about 1 accident resulting in human death in one billion (109) flying hours. The majority of bird strikes (65%) cause little damage to the aircraft; however the collision is usually fatal to the bird(s) involved. Most accidents occur when there is a collision involving a bird (or birds) and the windscreen or a bird (or birds) is sucked into the engines of mechanical aircraft. These cause annual damages that have been estimated at $400 million within the United States of America alone and up to $1.2 billion to commercial aircraft worldwide. In addition to property damage, collisions between man-made structures and conveyances and birds is a contributing factor, among many others, to the worldwide decline of many avian species. Related to this is a bug strike: an impairment of an aircraft/groundcraft or aviator/driver by an airborne insect. Pilots have very little training in wildlife avoidance nor is training required by any regulatory agency. However, they should not take off or land in the presence of wildlife and should avoid migratory routes, wildlife reserves, estuaries and other sites where birds may congregate. When operating in the presence of bird flocks, pilots should seek to climb above 3,000 feet (910 m) as rapidly as possible as most birdstrikes occur below 3,000 feet (910 m). Additionally pilots should slow their aircraft when confronted with birds. The energy that must be dissipated in the collision is approximately the relative kinetic energy is the relative velocity (the difference of the velocities of the bird and the plane, resulting in a lower absolute value if they are flying in the same direction and higher absolute value if they are flying in opposite directions). Therefore, the speed of the aircraft is much more important than the size of the bird when it comes to reducing energy transfer in a collision. The same can be said for jet engines: the slower the rotation of the engine, the less energy which will be imparted onto the engine at collision. The body density of the bird is also a parameter that influences the amount of damage caused. The US Military Avian Hazard Advisory System (AHAS) uses near real time data from the 148 CONUS based National Weather Service Next Generation Weather Radar (NEXRAD or WSR 88-D) system to provide current bird hazard conditions for published military low-level routes, ranges,