FACETS OF THE STARS - Stellar scintillation in real-time 4K HD
What is this twinkling colored dot of light? If I told you it is extremely far away and can only be seen at night? You guessed it, those are stars, bright ones. These are actually some of the brightest stars in our night sky and you’re about to see them in a very different way… Have you ever wondered why stars twinkle, some more than others, and some not? Well here is your chance to find out in a very visual way. The light emitted by objects at a very long distance from Earth (at least several light years) travels to us almost without being altered. However as photons are about to end their journey, they face a major obstacle: Earth’s atmosphere. The latter is made of cool gases but is very turbulent with zones of different densities and masses. This differences in pressure, temperature and density make our atmosphere a real hurdle for the light to arrive ‘in one piece’. As photons hit these different layers, they are being diffracted and scattered. This goes for all sources light coming from space. However the light emanating from relatively close, so ‘large’ objects (sun, moon, planets…), overwhelms the hurdle without any problem. It’s a whole different story for the light coming from far-away objects like stars, creating pin-point beams. Since the beam is smaller with fewer photons, we will tend to notice their diffraction and scattering a lot more, causing the light to rapidly and temporarily shift color and brightness. We call it stellar scintillation. It has actually been observed and studied since the dawn of human kind, but recent research has found that stellar scintillation is not only a change in apparent brightness and color of a star, but also position. In this video I wanted to showcase the stellar scintillation of some of brightest stars in the northern hemisphere in a ver different way. There exist some real-time videos of Vega lying around on the internet, but these are usually taken when stars are in focus. In order to increase the apparent area of a star, I needed to manually open up the aperture to its maximum at get an out-of-focus frame. The colors would then be more obvious, but several technical problems arose. The more out-of-focus the star was, the less ‘concentrated’ it light was, so the more I would have to compensate by increasing the ISO and reducing the shutter. However I realized on the spot that increasing my shutter speed would actually worsen the frame, since the scintillations were very often extremely quick and ephemeral. I had to keep a shutter speed between 1/15’’ and 1/30’’ to keep colors and details while still taking advantage of the maximum of light I could gather. I would also need the longest focal length lens I had with the widest aperture, so I after some test I decided to use the Samyang 135mm f/2, at f/2. While trying to get a decent sized bead in the frame, I necessarily had to bump up my ISO to at least 16,000 to get proper light, but that eventually caused some noise issue. After numerous tests