Алгебра 9 класс (Урок№38 - Формула суммы первых n членов геометрической прогрессии.)
Алгебра 9 класс Урок№38 - Формула суммы первых n членов геометрической прогрессии. Напомним, что геометрической прогрессией называется последовательность ненулевых чисел, каждый член которой, начиная со второго, равен предыдущему члену, умноженному на одно и то же число. Это число называют знаменателем геометрической прогрессии. Из определения следует, что знаменатель геометрической прогрессии отличен от нуля. Зная первый член и знаменатель, можно найти любой член геометрической прогрессии по его номеру. Это позволяет сделать формула n-го члена. Мы выяснили, что последовательность является геометрической прогрессией тогда и только тогда, когда квадрат каждого её члена, начиная со второго, равен произведению предыдущего и последующего членов. Это свойство геометрической прогрессии называется её характеристическим свойством. Более того, квадрат любого члена геометрической прогрессии, начиная с некоторого, равен не только произведению своих непосредственных соседей, но и произведению членов прогрессии, находящи
Похожие видео
Показать еще